SILICA DUST CONTROLS FOR SURFACE MINES

By John A. Organiscak

NORMAL

SILICOSIS

2004-2008 MSHA Dust Samples

Mining Commodity	% of Dust Samples Exceeding the Standard Due to Quartz			
Coal	11 %			
Metal	21 %			
Nonmetal	18 %			
Stone	13 %			
Sand & Gravel	12 %			

***Equipment operators most frequently exceed the standard.

Surface Mining Equipment

Drills

Bulldozers

Trucks & Loaders

BEST PRACTICES FOR SURFACE MINE DUST CONTROL

- Drill Dust Collection Systems
- Enclosed Cab Filtration Systems
- Controlling Haulage Road Dust
- Controlling Dust at the Primary Hopper Dump

DRILL DUST COLLECTION SYSTEMS

- 1. Dry Dust Collector System
- 2. Wet Suppression

1. Dry Dust Collector Systems

Dust Emissions From Dry Collection Systems

➤ Drill Shroud Leakage

- ✓ Maintain tight shroud enclosure with the ground
- ✓ Maintain at least 3:1 collector-to bailing airflow ratio

Shroud Height Effects

Shroud Height & Airflow Effects

Adjustable Height Shroud

Horizontal Shelf Laboratory Testing

80% Dust Reduction @ 2:1 Collector to Bailing Air Flow Ratio

Horizontal Shelf Field Testing

Examining More Robust Retrofit Shelf Designs

➤ Drill Stem Leakage

- ✓ Maintain good seal between drill stem and table
- ✓ Use air ring seal

Maintain Good Drill Stem and Table Seal

Air Ring Seal

- ✓ 41 70 % Dust Reduction
- ✓ Large Chip Elimination

≻Collector Dump

Shroud dump discharge close to the ground

Maintain Dust Collector as Specified by Manufacturer

- ✓ 51% dust reduction after replacing broken collector fan belt
- ✓ 83% dust reduction from replacing torn deck shroud

2. Wet Suppression

- ✓ Add small amounts of water to reduce visible dust cloud
- ✓ Operational problems from excessive water

Water Separator Increases Roller Bit Life

- ✓ 98 % With Separator
- ✓ 96% Without Separator
- ✓ Bit life increased 4.5 times

Limited to large drill stems

Smaller Drill Stem Water Separator

Smaller Drill Stem Water Separator Study

ENCLOSED CAB FILTRATION SYSTEMS

- Integrated into HVAC Systems
- Protection Factors Vary
 - Drills 2.5 to 84
 - Bulldozers 0 to 45
- Field Studies of Refurbishing Old Cabs
- Laboratory Study of Cab
 Filtration systems

Refurbish Cabs

- Ceiling mounted heating and AC units
- External filter and fan units
- Improve cab enclosure seals

Enclosed Cab Field Studies

Cab Evaluation	Cab Pressure Inches w.g.	Equivalent Wind Vel. mph	Inside Dust Level mg/m³	Outside Dust Level mg/m ³	Protection Factor Out/In
Rotary Drill	None Detected	0	0.08	0.22 Asc	2.8 ending
Haul Truck	0.01	4.5	0.32	1.01	3.2
Front-End Loader	0.015	5.6	0.03	0.30	10.0
Rotary Drill	0.20 - 0.40	20.3 – 28.7	0.05	2.80	56.0
Rotary Drill	0.07 – 0.12	12.0 – 15.7	0.07	6.25	89.3

Ensure Good Cab Integrity & Positive Pressurization

Hard to Seal Gaps

Utilize High Efficiency Respirable Dust Filters

- ✓Intake filter \geq 95% on respirable-sized dusts
- ✓ Use an efficient recirculation filter

Key Results of Laboratory Cab Testing

Fil	ters	Average Cab Performance Parameters						
Intake	Recircu -lation ?	PF Cout/Cin	Q _{intake}	∆p _{filter} "w.g.	\mathbf{L} % Q_i	Q _{recir} cfm	Δp_{cab} "w.g.	Stability min
$\frac{\text{Low } E_I}{38\%}$	No	1.7	37.3	0.30	2.0	366	0.17	17
$Low E_I$ 38%	Yes	13.4	41.0	0.47	2.6	328	0.19	8
$\begin{array}{c} \text{High } E_I \\ 99\% \end{array}$	No	13.3	18.1	0.52	3.6	386	0.07	29
$\begin{array}{c} \text{High } E_I \\ 99\% \end{array}$	Yes	168.4	23.2	0.70	4.9	338	0.08	8

90% Efficient Recirculation Filter Improved Both Cab Protection Factor & the Time to Reach It After the Door is Closed

Cab Mathematical Model

$$PF = \frac{C_{outside}}{C_{inside}} = \frac{Q_I + Q_R \eta_R}{Q_I (1 - \eta_I + l \eta_I) + Q_w}$$
 (Ideal Conditions)

Where:

 Q_I - Intake air quantity into the cab $(Q_I > 0)$, volume per unit time

 η_I - Intake filter efficiency (η_I < 1), fractional

l - Intake air leakage, fractional portion of intake air quantity

 Q_R - Recirculation filter airflow, volume per unit time

 η_R - Recirculation filter efficiency, fractional

 Q_W - Wind quantity infiltration into the cab, volume per unit time

Organiscak JA and Cecala AB. Doing the Math: The effectiveness of enclosed-cab air-cleaning methods can be spelled out in mathematical equations.

Rock Products, October 2009, pp. 20-22.

Cab Model Calculations

- 1) Baseline Design: $Q_I = 40 \text{ ft}^3/\text{min}$, $Q_R = 200 \text{ ft}^3/\text{min}$, $\eta_I = 0.95$, l = 0, and $\eta_R = 0$; PF = 20 min
- 2) With a 5% air leak around the intake filter gasket: l = 0.05; PF = 10

- 3) Adding a 75% efficient recirculation filter: $\eta_R = 0.75$; PF = 49
- 4) A 75% efficient recirculation filter without a 5% leak: l = 0; PF = 95

Additional Benefits of Good Filtration

Dirty HVAC

Clean HVAC

Minimize Dust Sources in Cab

- Seasonal dust level increased from 0.04 to 0.68 mg/m³
- Floor heater use increased dust levels from 0.03 to 0.26 mg/m³

- ✓ Use good housekeeping practices
- ✓ Remove floor heaters
- ✓ Rubber mats better than carpeting
- ✓ Gritless sweeping compounds *non-petroleum based*

Keep Doors Closed During Equipment Operation

- ✓ 0.81 mg/m³ when briefly opened to add drill steels
- ✓ 0.09 mg/m³ with door closed

CONTROLLING HAULAGE ROAD DUST

Average Airborne Particle Size Distribution

Typical Gravimetric Dust Concentrations

Dust Dissipation Effect

—— Road Berm —— 50 ft —— 100 ft

Total:Resp. ≈ 8 to 10:1 Thoracic:Resp. ≈ 3 to 4:1

TIOSH

Treatment of Unpaved Road Services

- ✓ Water effective with reapplications
- ✓ Salts, surfactants, soil cements, bitumens films (polymers) extend time of effectiveness

Increase Distance Between Vehicles

PRIMARY CRUSHER HOPPER DUMP

Enclose the Primary Hopper Dump

✓ Staging Curtains Reduce Dust Billowing Out

Use Water Sprays to Suppress the Dust

- ✓ Start by adding 1% moisture by weight
- ✓ Use photo cell or mechanical controlled sprays

Prevent Dust Roll Back Under Vehicle

- ✓ Tire stop reduces rollback underneath equipment
- ✓ Water sprays knockdown and redirect dust

CONCLUSIONS

- > Dry and Wet Drill Dust Collection Systems Very Effective
 - ✓ Tightly sealed shroud around drill hole critical for dry systems
 - ✓ Wet systems can increase bit wear, problematic in cold climates
 - ✓ Assumes quality control and maintenance programs
- > Cabs Can Provide a 10- to 50-Fold Dust Reduction
 - ✓ Good filtration system
 - ✓ Tightly sealed cab for achieving positive pressurization
 - ✓ Assumes quality control and maintenance programs
- > Road Dust Can Effectively be Mitigated by Routine Wetting
- ➤ Enclosed Hopper Dumps Contain Dust → Spray Capture

Questions or Comments?

John A. Organiscak, 412-386-6675, jorganiscak@cdc.gov

